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SIGNIFICANCE AND EXPLANATION

These lectures were intended to introduce young numerical analysts to

some recent research topics in multivariate approximation theory. After

lectures on approximation theory and linear approximation to set the stage,

an introduction is given to the recent advances in multivariate B-splines

and in multivariate polynomial interpolation.

These developments may well provide the theoretical foundation for

efficient methods of multivariate smooth approximation in the future.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the author of this report.
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TOPICS IN MULTIVARIATE APPROXIMATION THEORY

C. de Boor

1. Approximation Theory

In this first lecture, I intend to give an overview of what is

understood by the term "Approximation Theory". This is both a bow

toward the title of these lectures and a survey of the kinds of things
you might reasonably expect to see covered in these lectures, albeit

with the special accent of gmultivariate", but which I will for the

most part not cover at all. In effect, this allows you to locate within

the large scheme of things the few specific items I do cover.

Approximation Theory is usually understood to deal first and fore-

most with best approximation, or b.a. for short. This is the task of
finding, given an element x of some metric space X , an element

a from some given subset M of X for which

dist(x,m*) - infmeM dist(x,m) -: dist(x,M.0

Such an m is called a b.a. to x from m * In symbols:

m C-M(x)

Basic questions asked concern:

Existence: IM(x)l > 0 ?
Uniqueness: IIM(x)I < 2 ? More generally, IFM(x)I - ?
Characterization: How would one recognize a b.a. (other than by

the brute force approach of comparing it with all candidates)? This is

particularly important for the next question.

Construction.
A priori bounds: What can be said about dist(x,M) based on the

information that x lies in some set K ?

Details of the answers depend strongly on the specifics of X
dist , and M . Most commonly, X is a normed linear space, such as

C(T) :- continuous functions on some locally compact metric
space T

(e.g., T - [a,b) or T - En  or whatever) and the metric is provided

by the norm on X

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Existence requires that M be closed. Beyond that, it is usually

a matter of local compactness: A minimizing sequence (mn) in M is

picked; this means that mn e M and

OI ax - mni a dist(x,M)

Then (mn : n-1,2... is bounded, hence, by local compactness, has a

limit point m in M * For this (or any other) limit point,

dist(xM) 4 Ix-mi C lim sup IX-mnI - lim ix-mnI - dist(xM)

therefore m rr,(x)
The standard example for M is a finite dimensional linear

subspace of X , e.g.,

V - polynomials of degree 4 n

as a subspace of X a Cla,b] or L2 [ab] . The desired local compact-

ness is obvious for such an M . If M is a nonlinear subset, e.g., M

V 'n/Wm :- rational functions of degree n over m * the argument becomes

more sophisticated: The convergence notion used is weakened sufficient-

ly to gain local compactness while not losing the semicontinuity of the

norm with respect to this notion of convergence.

A real difficulty in multivariate approximation is the fact that

it becomes reasonable to consider infinite dimensional K . E.g.,

N a ClabI + C[c,d] C. C([a,bxc,dJ)

provides a simple example of the reasonable attempt to approximate a

function of many variables (in this case, two) by composition of funct-
ions with fewer variables (in this case, the sum of two functions of

one variable). Now even existence is a nontrivial matter.

Uniqueness and characterization involve a ball game, of sorts.

Imagine the closed ball r x) of radius r around x . Starting

with r - 0 , let r grow until r - r :- dist(x,M) . Then

- M B *(x)
K r

For general K and some x , this first touch may well happen at two

or more places. Zn such a circumstance, local uniqueness and character-

ization of a local(ly) b.a. become interesting questions. The

interesting exception to this general statement is provided by a

convex K- in which case we have the following picture:

-2-
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Geometric fact. If M is convex and m e M and r : ix-mt,

then m e ,Mx) iff it is possible to separate M and Br(x) by a

closed hyperplane through m , i.e., iff there exists A e X for

which

A[B r(x < Am 4 AIM) (1.1)

The first inequality in (1.1) is equivalent to

A[Br(O)I < A(m-x)

i.e., to
A * 0 and lAir c A(m-x) ( C IAllm-xl = lAir )

hence to
A * 0 and A(m-x) - SAlm-xl

This last condition is called variously ( A * 0 and) " m-x is an

extremal for A or " A takes on its norm on m-x 0 or 0A is

parallel to m-x . I like this last phrase best and therefore write

this condition
A 11m-x

to remind you of the familiar picture: In a finite dimensional setting,

A would simply be the vector normal to the (separating) hyperplane

and would point in the same direction as m-x does; in short, A

would be parallel to m-x

As a matter of convenience, one talks instead about the error

x-m * This requires switching the sign of A and so gives the

-3-.
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Characterization Theorem. Let M be a convex subset of the normed

linear space x , let x E XsM , and m E M . Then

i) m ef(x) < -- > a AII x-m s.t. A[M] 4 Am
(ii) if H is a linear subspace, then

m ef(x) < --- > 3 I x-m 1 1 1 M (i.e., A[M - (0))

Here is a good exercise which can be handled by entirely element-

ary means: Let x e X , a nls, let A e X*\ 0 and m e ker A .

Then, a 6 "ker X(x) <-> A(x-m) - IAXIx-ml . For it, you might want

to prove first that
*

X e X , A e X --- lAxj - EXldist(x,ker A) (1.2)
which contains all the customary error estimates of elementary numeric-
al analysis.

Since A 11 x-m and A I M together imply that A 11 x-m' for

all m e rrM(x) , nonuniqueness in case of a linear M is tied to the

possibility of such a A being parallel to more than one element (of

the same size), i.e., for the hyperplane

(y e X : Ay - 1)

to touch the unit ball BI(O) at more than one point. Since both M

and Bdist(xM)(x) are convex, having two distinct points m and
me in -M(x) implies that the whole line segment [m,m'] between

m and m' is in '?M(x) . This says that the unit ball must contain

line segments in its boundary, which is the same as saying that the
norm is not strictly convex. Put positively, strict convexity of the
norm (such as the LP-norm for 1 < p < * ) implies uniqueness of b.a.

from a convex subset.

For more specific choices of X and M , the characterization

theorem can be made more explicit, to the point where it can be used

for the construction of a b.a. For example, if X - C(T) and " is an
n-dimensional linear subspace of X and m e M , then

I rcn ,(wi),(ti) s.t. A Zr+lw ft I l x-m and A I M

Here, It] denotes the linear functional of point evaluation at t
r] i.e., [tI:f I-> f(t) . Behind this specialization of the general char-

acterization theorem is the result useful for Numerical Analysis that
any linear functional on an (n+l)-dimensional subspace of C(T) has a
norm preserving extension of the form Zn+l wIt I

-4-
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You wil± recognize in this characterization the familiar statement

that the error x-m in a b.a. must take on its norm at points tI ,

$.Of tr+I with r 4 n and such that, for some weights wi with

wi(x-m)(ti) ) 0, all i , one has Z r+1 ii [ .I4

It is not difficult to see that nonuniqueness is connected with

having r < n here. (Also, the norm is not strictly convex, so we

would expect nonuniqueness for some x and M .) Recall that an

n-dimensional subspace M of C(T) is called a Haar space if, for any
distinct points tI , ..., tn  in T , ([t i)n is linearly independent

S1 r* 1
over M . For a Haar space M , having 0 $ A : Z w iti I Mim-1 ii-

plies that r ; n . Having in addition that A x-m implies that

A 1I x-m' for any other b.a. m' , therefore m and ml must agree

at the points t1 ...F tr+1  (assuming without loss that wi # 0 , all

i) , and, using once more that M is Haar, this implies that m m'

Conversely, one can show that, if M is not Haar, then there are

functions with many b.a.'s from M

This equivalence between uniqueness and the Haar property has

unhappy consequences for multivariate approximation, because of the

following

Fact (Mairhuber). If T is not essentially just an interval, and

if dim M > 1 , then M is not Haar.

The proof consists of a bit of railroading: Let (fit "'.' fn) be

a basis for M . Then det(fj(ti)) is a continuous function of the

n points ti, ..., tn . If now T contains a "Y" , i.e., a "fork" or

"switch", then one can continuously deform (tI, t2, t3, ..., tn )

into (t2, tI , t3 , ..', tn ) while keeping the ti's distinct:

t t t2  t2

tI  t2  t3 tI  t2
t2 - 3  n  t3 > 1

t n n t
n n

This means that the determinant has changed sign along the way, hence

must have vanished for some choice of n distinct points.

The resulting nonuniqueness of b.a. in C(T) for multidimension-

al T has produced a great industry in uniform approximation by funct-

ions of several variables and much fun can be had. I shall resist the

temptation to enter into details now, because I am not convinced that

best approximation is all that practical.

-5-



The question of a priori bounds or degree of approximation is

concerned with

dist(K,M) :- sup dist(x,M)
xeX

A typical example would be : X - C[O,1], M - n , and K :-

( x 6 X : Ix"I 4 1 ) . Actually, it is not easy or even useful to be

precise without getting simply the number dist(K,M) . The question of

degree of approximation comes into its own when one has given a scale

(Mh) or (Mn) of subsets with h -> 0 or n -> * and then con-

siders

EK(h) :a dist(K, Mh)

as a function of h . One proves direct or Jackson-type theorems:
x e K --- > dist(x, Mh) - hr

and tries to demonstrate their sharpness, if possible, by proving

inverse or Bernstein-type theorems:

dist(x, Mh) - hr .=.> x/Ixi e K

Related is the question: Given that x e K , is the scale (Mh) a

good choice for approximating x ? What is one to judge by?

Kolmogorov [1936] proposed some time ago that dist(x,M)/dim M is a

good measure. He introduced

dn(K) : inf dist(K,M) -: the n-width of K
dim! 4 n

While it is not easy to find an optimal subspace, i.e., a subspace at

which the infimum of the definition is taken on, one would at least

like an asymptotically optimal scale (Mn) , i.e., a scale with dim 1n
n for which dist(K,Nn ) - O(dn(K))

Once effort enters considerations of approximation (here in the

form of the dimension of M , i.e., the degrees of freedom used in the

approximation), one can, of course, ask more: Is it really worthwhile

to construct best approximations, particularly when a near-best approx-

imation is cheaply available? Here we call the linear map

A:X --> N a near-best approximation scheme if

3 const V x e X Ex-Axi 4 const dist(x,M)

Here, const - 1 would be best possible. Ax would then be a b.a. for
every x . This does happen in inner product spaces but hardly anywhere

else except in very special circumstances. In any event, such A is

necessarily a linear projector (with ran A - M ) since the inequality

implies that AIM - 1 . These approximation schemes are the topic of

the second lecture.

-6-



IThere are many books on Approximation Theory available. One of the

most striking is Lorentz 119661 . Akhiezer 119671 summarizes the clas-

* sical part. Both Cheney [19661 and Rivlin [19691 provide a careful

modern introduction to the field while the two volumes of Rice [1964,

19691 bring quite a bit of additional material, especially on approxim-

ation from a nonlinear M . Powell [19811 and Sch8nhage [19711 each

give a very interesting view of the subject.

~-7-
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2. Linear Interpolation

Linear projectors arise from interpolation, as I intend to make

clear in this lecture. Fortunately for me, Ward Cheney is with us who

has spent a good part of his professional life studying linear project-

ors. He will no doubt be ready to answer all questions left over after

(or raised by) this lecture. Look for his publications (e.g., Morris

Cheney (1974]). See also the excellent book by Davis [1963].

The setup is quite simple: We have a linear space X of functions

on some domain T and, correspondingly, the linear space X1 of lin-

ear functionals on X . we have given fl " fm e X and

Ai  I . n e V and consider the

Task: Given g e x , construct Pg :- Ema(j)f such that Pg

interpolates to g at A1 , ..., An , i.e.,iPg -Aig ,inl,...,n.

For example, the specifics: T E [a,b] , X - C[a,b] , fj =
()-1 and Ai = [ti ] describe the task of polynomial interpolation.

Altering this to A i:f > ITf(x)fi(x)dx , all i , and choosing m = n

describes least-squares approximation by polynomials.

Our first observation is that this task does not depend on the
individual functions fl f " fm nor on the individual linear funct-

ionals A1 , n , but only on their spans

F :-span (fi), :"(Em U) f a e 5m)
and

A span (Ai).

This is obvious for the fi's since the very task is stated in terms of
their span. As to A , observe that

Aig - Aih , i-l,...,n <---> V8 e Rn (1z(i)Ai)g - (zs(i)Ai)h

We use the abbreviation

LIP(F,A)

for the Linear Interpolation Problem given by F and A , i.e., for

the

Task: Given g e X , find Pg e F s.t. g - Pg on A.
Here, F and A are understood to be linear subspaces (finite dimens-

ional) of X and X1 , respectively. We call LIP(F,A) correct if the

task has exactly one solution for every g e X

~-8-



Now, having just gotten rid of the fi's and Ai's , it is con-

venient to reintroduce them, in a possibly refined form: Let rfi) 1  be

a basis for F and let (Ai)n be a basis for A . Then

E Zja(j)fj solves LIP(F,A) for given g <==>

a r R solves Ij(Iifj)Q(j) = Xig , i=l, ... n.
We conclude

Lemma. (i) LIP(F,A) is correct <===> the Gramian G
(lif.ljm n is invertible.

1i
(ii) LIP(F,A) is correct =-=> Pg = E Q(j)fj with

A-l A igA " - .

The proof is linear algebra: Since (fi) is linearly independent,

uniqueness is equivalent to having A 1-1. Since (Ii) is linearly

independent, existence is equivalent to having A onto. Note that

correctness implies m = n

The map P defined by such a correct LIP is linear (as a compos-

ition of the linear maps g > (ig) -> a - G-1 (ig) i-> Eja(j)fj ).

Also, by uniqueness, PIF =1 , hence P2 = P , showing that P is a

linear projector. Its range is

ran P - F - (x e X : Px x}

while its kernel or nullspace is

ker P - (x e X : Xx 0 0, all X Q Al =: A1  = ran(l-P)

The customary view of a linear projector is that it provides a direct

sum decomposition:

x = Px + (l-P)x

(1-P) -7X

/X/

- ran P
S/ Px

Px is the projection of x onto ran P along ker P . I prefer to

-I think of P as given by F = ran P and its interpolation conditions

A - to e V : oP = p} = ran Ps

This stresses the fact that Px is the unique element in ran P which

agrees with x on A

The construction of Pg involves, off hand, the solution of the

linear system Go -Xig ) .This can be viewed as switching over to the

-9-



new basis (Al) for A with

11 :- IG-l(i,j)A.

Such a basis is, by its construction, dual to (fi) , i.e.,

lifj " a ij
Another possibility is the Lagrange approach: Switch over to

fJ :- EiG-l(i'j)fi

so that now (A.Vf) - 1. Yet another possibility is the Newton

approach: If possible, switch over to
V :" EiR-l(i,jlf i  A, :0 ," L-1li,j)xj3~ i f

with LR a triangular factorization for G , giving again (Alf! 1

In this last approach, we would need (Aif )r invertible for

r-l,2, .... Equivalently, we would need the LIP(FrAr) with Fr :- span

(fl,...,fr) , Ar s- span (l,...*,dr) to be correct, giving rise to a

projector Pr r-l,2,...,n . In these terms, suitable bases for F

and A can be constructed bootstrap fashion:
- (1-Pi .)fi , -

Pi a Z fix! /Alf!
j.9i

which is, in effect, Gauss elimination without pivoting.

The example inspiring all this terminology is# of course, polynom-

ial interpolation, mentioned earlier, in which fj j-1 and

xi - Itti . The Lagrange approach leads to

f! st I-> nij(t-t )/(ti-t )
while the Newton approach leads to

f; jt -> ii<j(t-t , A- [tv,...,t i ]

the divided difference at tI , ... , t i , and thence to the Newton form

Pg . nl~tl,...,tl~ I o t).
j<i

Another well known example is specified by : X - C(T), F

- span (fi) , of dimension n , and

ig-> fTfg ,i ,

Now P is Least-squares approximation, and the Newton approach is, in

this instance, called Gran-Schmidt orthogonalization.

We are interested in linear projectors because they provide near-

best linear approximation schemes. Explicitly, we have

Lebesgue's Inequality: ig - Pgi 4 I1-PI dist(g,F)

in case X is a normed linear space (-s nls) and P is bounded. In

-10-



fact, we have a bit more:

lug - UPg 4 dist(u, A) 1I-PS distig, F) , e e X , g e X .(2.1)

For the proof, note that, for A 6 A and f e F , X(l-P) - 0, (1-P)f
a 0 , so

I1g-uPgI - I(u-A)(l-P)(g-f)l C IM-1AIl-Pllg-fl
Now take the infimum over X 6 A and f e F .

The inequality (2.1) is important for the rule makers who
customarily approximate ug by mPg ever since Newton proposed this
for ug - fg and P polynomial interpolation. The variational
approach to splines, particularly important for the understanding of
Duchon's multivariate 'thin plate' splines (Duchon (19761, (1977],
Heinguet 11979]), takes off from this setup. See the epilogue.

The basic inequality (2.1) raises the two questions:
i) Is P bounded? (ii) How big is IPM (or, El-PU )?

The following two lemmas give answers of sorts.

Lemma 2.1. Let P be given on the nls X by LIP(F,A). Then*

P is bounded iff ACX (:- continuous linear functionals on X ).

Proof. "-->" For all A e A , A - AP a (A)OP with X cont-

inuous since dim F < IF.
"<-- We can write P Z nfiv , hence p, C Ef'IIA'I <

liilii

Lemma 2.2. IPI - sup inf llifi/llfI
feF AeA

Proof. For any linear map A ,

1AI sup IAxl/IxI - sup sup IAxl/Ix-yI
x~kerA x~kerA yekerA

a sup IAxi/dist(x,kerA) - sup inf IAxIlA1/IlxI
x~kerA x~kerA AllkerA

If now A is the linear projector P , then x a Px + (l-P)x and Px

e F - ran P while (1-P)x Q ker P . Further, I I ker P iff
A e A (- ran P') t using the fact that ran P - x : x - Px} , hence

A I ker P --> I I ran(l-P) -=> A - AP a-> A 6 ran P = A

Therefore,
1PM a sup inf IPxIeAI/llxl = sup inf ex ll/lXxI III

x~kerP AikerP xeF xeA

-11-



3. The tensor product construct

Our first foray into a multivariate setup is by tensor products.
This construct is of limited use. Yet when it can be employed, it is so
efficient that it is worth some effort to bring a given approximation

problem into this form, if it can be done at all. Somewhat surprising
approximation theoretic advantages of tensor products are discussed in
de Boor & DeVore 119811.

The mathematics is quite simple, yet papers still appear which
look forbidding and needlessly complicated since they do not make full
use of the fact that, when dealing with tensor products, everything is
essentially univariate, even the computer programs.

Naively, the tensor product of two univariate linear approximation
schemes or projectors P and Q is formed as follows. For each
fixed y , the linear projector P is applied to the y-section

hy :- h(-,y)

of the bivariate function h , giving the univariate function

Phy z E. (j;h y)f.
in which the coefficients a(j) - a(j;h y) depend on hy , hence on y.

Then Q is applied to each of these coefficient functions

c ty --> %(j;hy) I

thus obtaining their univariate approximations

Qcj -Zku(k;J)gk,

with (gk0 a basis for ran Q . Altogether, this gives the approximat-

ion

(Rh)(x,y) - B(kuj)gk(Y)fj(x)
to h. j,k

Several questions are immediate: What is the nature of R ? Is

R a projector? What is the corresponding LIP? If we first use Q on
each x-section of H and then P on the resulting coefficient funct-
ions, would the resulting approximation be again Rh ?

We consider the last question first, since its answer supplies
also the answer to the other questions. At its root is the question of
whether the two operators P61 and lQ defined by(POI)h : (x,y) --> (Ph y)(x) , (16Q)h : (x,y) -- > (Qhx)(y)

comute. Since both P and Q are linear projectors, this question is

settled once we know that X01 and 1P commute for each A e ran P'
and each v e ran Q' . This is dealt with next in careful (and perhaps

boring) detail.

-12-



Suppose that xr is a Is of functions on some domain Tr , r-l,2.

The tensor product X1SX2 of the two linear spaces X1  and X2  is

customarily defined as the dual of the linear space of all bilinear

functionals on X1 XX2 . Since I intend to use this concept only in the

context of function spaces, I prefer the following definition: For xr
e Xr 0

16X2 : TlxT 2 -> R : (t11 t2) I-- xI(t1)x 2 (t2 )

defines a function on T1 XT2 called the tensor product of x1  and

K2 . Further, T 1xT2
Xl0X 2  :- span( x1 ex 2 xr e Xr C R 1 T2

It is easy but essential to verify that the map

XIXX 2 -> X310X2 : (xlX 2) x-> x10x2
is bilinear. This implies that

X1X2 = { Zj xl 2j : xrj Xr
(i.e., the scalars in the linear combinations making up X1eX2 can be

absorbed).

Prime examples are the spaces

PMOPn :- polynomials in two variables, of degree < m in the first

and of degree < n in the second,

and

RORn = mx  = m-by-n matrices

Correspondingly, one defines the tensor product AOU of A e X

and V e Xi as a linear functional on XIeX2 by the rule

Asp 2 x 1x 2 -> R : I. u. Vj -> Zj(uj)(Uvj.)
This is so obviously a linear functional on X1OX2  that it is easy to
overlook the only nontrivial (though certainly not very deep) point

about this definition, viz. whether it is a definition. The problem is
that the rule for the value of AO® at w - Z u.Ov. makes explicit

use of the particular representation of w mentioned. Elements of

X1OX2 have many different representations. For example, if u - a~b
and v - 2c , then

uOv - aev + bOy - a~v + (2b)Oc - aec + a6c + bev =
We should therefore have, correspondingly, that

(Au)(uv) - (a)(v) + (Ab)(v) =

- (Aa)(Pv) + (21b)Cpc) -

- (ka)(,c) + (xa)(uc) + (Xb)(Cv) -

We must therefore verify that the number I.(xu.j)(Uv.) depends only on

A , v , and w := Zu Svj , and not on the particular representation
for w used, i.e., not on the individual uj's and vj's. For this,

-13-



let

Then v e X2 ,and
v(t2) - (1(Xuj)v!)( t2) MA Z(Au)v.i(Y

A(Zujvj(t 2)) . w(..t2)

showing that v is the A-section of w

v a W
in particular, v depends only on w and A . On the other hand,
Z (Au.) (uv.) - uawX

Note that we get by symmetry that also I i('Xu )(Mvi) u wM
showing the hoped-for commutativity.

We are ready to define the tensor product of two LIPS (did the
T

Tiny Tim craze ever catch on here?): Assume that, Fr S. Xr S. a r and

Ar C Xr' give rise to the correct LIP(Fr*Ar) with corresponding

invertible Gramian

Picksom spce of Gr t (An f )nr
PicksomespaceW_ o functions on T xT2  which contains F :

11 2

* I ~~~v~ AiAj , all i,j

and set A :- span(v1)) .

Then: M(i) j) :0 (fli*f2j) is a basis for F

(ii) The LIP(F,A) is correct.

(iii) The corresponding interpolant Pw to w e W can be comput-

ed as

rw UG 1 _lw( 21 and Lw(i ,j) :- vijw *all i'j . (3.1)

For the proof, any w e F can be written w l E1 r(i~i)fj for

some suitable coefficient matrix r . From this, we compute that

Lw (r,s) t r~ rsw f

a Z G1(r,i) r(i,j) G2(s,j) Ga r G2T

This shows that r - Gl 1Lw(G2 T )-1 ,£~. eed nyo

This proves Ci). Further, it shows that (A14iw) -L <a==

r -GljlL(G 2 Tl I thus proving (ii) and (iii).
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A simple example is provided by the tensor product of cubic

Hermite interpolation, i.e., cubic interpolation at the four points a,

a, b, b, with osculatory parabolic interpolation, i.e., parabolic

interpolation at the three points c, c, d . The above description

leaves considerable freedom in the choice of the v * A natural

choice would be i\j 1 2 3

1 w(a,c) w (a,c) w(a,d)

2 Wx(a,c) wxy(ac) wx (a,d)
3 w(b,c) w y(b,c) w(b,d)

4 wx (b,c) wxy(bec) wx (bd)

and this would require the function space W to consist of functions

defined (at least) on the rectangle [a,bjx[c,d] (assuming that a <

b and c < d ) and to have first derivatives and the first cross deri-
vative (in a pointwise sense). Further, the desired commutativity would

require that Wxy - wyx for all w e W .

The computational advantage of this construct over other means of
approximation is considerable. It generally takes O(N3/3) operations to

solve the linear system for the coefficients of the solution of a LIP
using N degrees of freedom. This number can be reduced considerably

in a univariate setup (such as in spline approximation) through the use
of special bases which make the resulting system banded. This is much
harder in a multivariate context. In any event, if the LIP(FrAr) in-

volves nr degrees of freedom, r-l,2 , then their tensor product in-

volves nln 2 degrees of freedom. Yet, using (3.1), one can compute the

requisite nln 2 coefficients in O(n1
3/3 + nl2n2 + nln 2

2 + n2
3/3)

operations, since it only involves solving n2 systems of order n,
with the same coefficient matrix, and n, systems of order n2 with

the same coefficient matrix. Further savings are possible because this

reduction of the computations to the univariate context provides the

opportunity to make use of whatever savings are available in that con-

text. If, for example, the univariate schemes give rise to banded syst-

ems, then their tensor product can be constructed in O(nln 2) operat-

ions.

This leads to a point made in de Boor (1979], that it is possible

to form the "tensor product" of the computer programs for the solution

of the univariate "factor"-problems. Typically, one has availRble pro-

grams INTERr(B,MA) which take the input vector B - (: rig)lr with

M - nr , and produce from it the desired coefficient vector A - a for

the interpolant Prg (J)frj to g . Two changes are required to
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make such a program amenable to tensor product computations: One ex-

tends it to allow B to be a collection of N input vectors, i.e., to

allow B to be an M-by-N matrix having these N data vectors as its

columns; this requires that also N be supplied on input. Correspond-

ingly, the output A becomes a collection of N coefficient vectors,

i.e., a matrix. But, for reasons that will be obvious in a moment, the

resulting coefficient vectors should form the rows of that matrix,

i.e., A should be an N-by-M matrix. This gives the extension

INTERr'(B,M,N,A) . With it, we can solve the tensor product of the

two LIP(F r,A r ) , r-l,2 , by the two calls

CALL INTER 1 (Lw,nln 2 ,A)

CALL INTER2'(A,n 2,nIF)

The two programs could even be the same as, e.g., in bicubic spline

interpolation. Further, once such extended programs have been written,

it is possible to carry out tensor product interpolation using more

than two factors. Finally, this formation of program "tensor products*

is also helpful in the evaluation or other manipulation of the

interpolant. In any event, the detailed programming effort takes place

at the univariate level, just as in the mathematical analysis of the

construct.

The error is easily obtained formally. Writing Er :- 1 - Pr for

the error in the linear approximation scheme Pr I we find
1 - (P1+E1)@(P2 +E2 ) - PIeP2 + P1eE2 + E1OP2 + E19E2 . (3.2)

This shows the error operator for the tensor product scheme PIop2 to
be a sum of the univariate errors. The order of approximation is there-

fore no better than the worse of the two univariate schemes.

Now note that PrEr = ErPr = 0 . This implies that any sum of

terms from the right hand side of (3.2) gives a linear projector. In

particular, Gordon 11969)1,2 has proposed the use of the socalled

Doolean sum

P1 P2  :- P1 S1 lOP2  lP2 PP 2  1 + E1 P 2 .

The resulting approximation scheme is called blending since it uses
interpolation conditions of the form kOl and lOt , hence, in its

simplest form, matches information along certain lines parallel to the

axes and so constructs a surface by "blending" together certain curves.

For blending, the error is the product of the univariate errors. This
improvement over the tensor product is bought at a high price: An in-

finite amount of information about the function to be approximated is

required. Gordon has dealt successfully with this problem by proposing
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that one first use a relatively dense but finite amount of information

to construct good approximations to the required curves and then use

these approximations in the final construct.

4. Multivariate polynomial interpolation

I begin with a review of the standard notation concerning polynom-

ials in m variables. The notation is designed to make it all look

just as in the univariate case. The general polynomial of total

degree 4 k is , by definition, any linear combination
x -> E~{• Aa xa

of the monomials ()a with lal • k . Here,

xa  :- x(l)
a  . ... *x(m)

a im )

and the length lal of the integer vector a is defined by

Jul -u l0 1 a(l) + ... + a(m)

if, as we assume, all the components of a are nonnegative. For such

an index vector, one sets

*I :- a(). ... ,a(m)1

and thereby recovers the binomial formula

(x +y)a - Z ( xy
04a

The partial ordering used here is componentwise:

A 4 a :- for all i, 0(i) 4 a(i)
This gives Leibniz' formula

D(fg) U r (;) (Dof)(D0-g)

for the derivative of a product. Here,

Da  :- D 1 (l)... Dm( m )

with Di the partial derivative with respect to the ith argument. More

generally, p(D) is the constant coefficient differential operator

p(D) :- E A Da

in case p is the polynomial

p a to Aa()a  y.

For the special linear polynomial
Pzxk--> x*y :- S ix(t)y(t)

we write

Dy :- Z y(i)Di
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instead of D*y for the resulting (unnormalized) derivative in the

direction of y

In one variable, it is convenient to talk about Pk , the linear

space of polynomials of order k , i.e., of degree < k , since its dim-

ension is k and the optimal approximation order from Pk achievable

on an interval of length h is hk . In several variables, approxim-

ation order continues to be linked to (total) polynomial order, but the

dimension and other interesting quantities are more easily expressed in

terms of (total) degree rather than order. For this reason, I will

concentrate on the linear space

Sk a "k( m )

of all polynomials of (total) degree 4 k in m variables. It is not

difficult to see that

dim k(OP) - (m+k)

Indeed, the rule
a(r) :- i(r) - i(r-1) -1 r role...,em

sets ip a 1-1 correspondence between

(a e a o{ k)
ad the set

(IC. (l,...,m+k} : III - m}
fm+k I

of urdinality - n?- if we let i(l), ... , i(m) be the elements of

I , in increasing order (and take i(O) - 0 ). Thus the generating

'sequence' ( ()IaIk

for wk contains (mk ) terms. On the other hand, this sequence isk m
linearly independent since, e.g.,

[O]DB()O - a6

Note that

dim (k e w (M-l+k)mi (k+l • k )  -1-

since (a e z : Jal - k) is in obvious 1-1 correspondence with

{a e--l lal • k) * This reaffirms the well known identity
(mm k) . ruO (--l1r

m +rkz0o m-lIr "

We now consider the LIP(wkT) so LIP(wk span([t]}teT) with T a

subset of Rm . We call T correct (for wk ) if the LIP(wkT) is

correct. Since wk is not the tensor product of univariate polynomial

spaces, it seems unlikely that we could employ the tensor product con-

struct to obtain correct T's . Yet it is possible, as the following

example, two-dimensional for simplicity, shows. Recall that the linear
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projector of polynomial interpolation at points u0, ..., uk  can be

written in Newton form as

Pu = E k +±~O . uiou * ui[Uo,...,ui]

with

Oui(x) := (x-u0)...(x-ui_ 1  all i

Therefore, any partial sum

R z 4 ui@uvj[ 0,...,ui]@[v0
, .... v I

(i,j)eI u
of its tensor product with Pv for some point sequence v0, ..., vk
is also a linear projector, given that I . {0,...,k)2 . The range of

R1  is somewhere in w 0' * To insure that it is actually 2k(R

choose I - ((i,j) : i+j 4 k) . With this choice, ran RI k and

equality must hold since, by just counting terms, we see that ran RI

has dimension (2+k) which is dim v (R) It is now a nice exercise

to verify that, for this choice of I , R. solves the LIP(wk,T)

with T :- ((ui,v.) e R2 : i+jk} .

The same construction works in m variables and so provides the

only standard choice of correct point sets T for wk(SP ) . This is

the simplicial choice which, up to a linear change of variables, is

T - {(up,Vq,...,wr) e I : p+q+...+r~kJ

with (up), (vp), ..., (wp) given sequences of real numbers. Note that

an affine change of variables

x --> Ax + b

leaves wk invariant, hence leaves invariant the collection of correct

point sets T for wk .

More general correct point sets can be generated with the aid of

the following theorem due to Chung & Yao (1977], - and here I must

thank Dr. A. Genz for pointing out this reference to me.

Theorem 4.1. If the point set T C Rm  has cardinality

dim wk(R0) , and, for every t e T, there exist k distinct

hyperplanes on which all points in T lie except for t , then T is

correct for wk(e)

It is clear how one would prove this theorem: For each t e T , we

can find, by assumption, k m-vectors a1 , ... , ak  and scalars b,

... , bk so that the k-th degree polynomial

Ltx 1-> (a1*X-b1)...(ak*X-bk )
vanishes on T\t but not at t . This implies that, for any given g

# the function
zte T g(t) Lt/Lt(t)
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is a polynomial of degree 4 k which agrees with g on T . On the

other hand, the 'sequence' (Lt)teT is linearly independent (since it

is obviously independent over T ), and, by assumption, contains exact-

ly ITI - dim vk terms, hence must be a basis for v and this

establishes the uniqueness of the interpolating polynomial. In short,

we have the generalization of Lagrange's way of treating univariate

polynomial interpolation.

A particularly striking instance of such a correct set T are the

"natural latticesm of Chung & Yao [1977j rediscovered recently by

Dahmen & Micchelli (19801, and also by Hakopian [198112 . Pick n

points a1 , a.., n  in R0 so that the points 0 , a 1 , ... , an are

in general position, i.e., any m+l of them are affinely independent.

To recall, m+l points b0 , ..., bm  in R are affinely independent

if their affine hull is all of R , i.e., if volm conv (b) 14 * 0

Then, for any subset I of (1,...,n} with III- m , there exists
exactly one xI for which

I + ai*xi - 0 , all i e I
(Indeed, since 0 , (ai)ieI are affinely independent, the sequence
(ai)iei must be linearly independent.) Further, for this x, , we must

have

1+ aj*x I p 0 , all j £ I
(since 1 + aj*x, - 0 implies that (ai)ieI aj all lie in the

hyperplane {x e Jm: l+x-x I = 0) , hence are not affinely independent
which, by assumption, is possible only if j Q I ). We conclude that

T :- (x I : I C {1,...,n), III= ml

is correct for wk(P ) with k :u n-m , since ITI . (n) - dim wk and

1+ a'*x
L1 :x --> Ti + a -X e wk

jol I
with LI(xi) Ii *

It is a nice exercise to develop a Newton form for the resulting

polynomial interpolation scheme. This leads to a particular generaliz-

ation of divided differences quite different from the tensor product

construction with which we began this discussion.
The Newton approach has recently been generalized by Gasca &

Maeztu (1980]. Although the idea is proposed in le , I shall follow
its authors and discuss details only in R2 . Start with a straight line

I 1 + a 1 x - 0 . (This is not quite the most general line, but that

doesn't matter.) Add a bunch of lines 1 + ali*x - 0 , intersecting the

first line at distinct points x1 j, i=l,...,ml . Form the polynomials
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pli:x -> (1 + all*x) ... (1 + ajlji..x) , iol,...,m•

The LIP(span(Pli),span(x l i])) is correct since the Gram matrix

(Pljix1 i)) is triangular with nonzero diagonal, hence invertible.

Now add a second line 1 + a2 *x o 0 intersecting the first line

at a point other than the x1 i's (if at all), and add a second bunch of

lines 1 + a2i*x - 0 , intersecting the second line at distinct

points x2 i, i-l,...,m 2 . Form the corresponding polynomials

P2iX --> (1 + al*x)(l + a21 *x) ... (1 + a2,il*x) , i-1,...,m 2
Then (and this is the salient part of the construction), the single

linear factor (1 + a2*x) in the P2i makes them vanish at all the

earlier interpolation points xj . With this, the matrix (Prj(xsi))

in lexicographic order is triangular with nonvanishing diagonal, and

thus the LIP(span(prj),span([xsiJ)) is correct.

The general pattern is now clear. What is less clear is just

what span(Prj) might be and, in more than two variables, things

become horrendous. Still, for certain regular choices (see Maeztu

[19821), span(Prj) can be shown to coincide with vk and the corre-

sponding correct point set can be more general than the simplicial

choice, but not more general than those covered by Theorem 4.1.

In his 1978 thesis (see Kergin [1978], [1980]), Paul Kergin pro-

poses a totally different approach to multivariate polynomial interpol-

ation which, in a way, gave impetus to all the material yet to be dis-

cussed in these lectures. I begin with Kergin's result as he stated it.

Theorem 4.2. For any point sequence to , ... , tn in Rm  there

exists exactly one map P:C(n)(R0) -> 'n so that

(i) P is linear;

(ii) V geC(n) V 04k<n V qkewk homogeneous of degree k

V Jc (0,...,n) with IJl = k+1
qk(D)Pg = qk(D)g

at some point in conv(t,)j~

Here, as earlier, cony T denotes the convex hull of the point

set T . Further, qk e 'k is homogeneous of degree k in case

k Jl . A()a

Consider for a moment the special case m - 2 . The stated requir-

ement for k = 0 forces Pg to agree with g at each of the ti's

For k- , we have

qk(D) = A(1 0 )Dlg + A(0 1 )D2g
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Thus, if ti $ tj , then P9 would have to match any such derivative

ql(D) somewhere on the segment between ti and tj . This condition

is already satisfied in case ql(D) is in the same direction as the

segment since P9 matches 9 at ti and tj . Therefore, this

imposes just one additional condition, viz. that the derivative normal

to the segment be matched somewhere along the segment. If ti a tj

for i # j , we get two additional conditions, viz. that Pg have the

same tangent plane at ti as does g . In other words, we obtain oscu-

latory interpolation.

An extreme case of osculatory interpolation occurs in case to =
. tn - Now Pg is necessarily just the Taylor expansion of

degree 4 n for g at to.

Kergin begins the proof of his theorem with the observation that

P is necessarily continuous on X :_ c(n)(G} for any bounded G

containing to , ... , tn . Since P is linear, this requires only to

show that P is bounded (on X ) . This latter fact Kergin shows by
observing that, by assumption, the leading coefficients of Pg agree
with the corresponding normalized derivatives of g at certain points,

hence can be bounded in terms of *gX . He then considers Pg - Lg
with Lg the leading terms of Pg just estimated and observes that

the leading terms of the resulting polynomial are of lower order and

must interpolate to the corresponding normalized derivatives of g -

Lg at certain points, hence can be bounded in terms of Ig - Lgi X

therefore in terms of 1g1X . The inductive argument is now clear.
In consequence, P can be understood entirely from its action on

a fundamental subset of C(n) , i.e., a subset R whose finite linear

combinations are dense in C(3) . Kergin chooses R to consist of

socalled plane waves (F. John) or ridge functions (C. A. Micchelli),
R t- (gol t g e C (n)(it) , X e (3p)1 -

Such a function is constant in all planes normal to a certain

direction. Explicitly,

(gox)cx) - g()A*X) - g(IZ(i)x(i))
Note that it is sufficient to take just one suitable g , e.g.,

it
g:t --> e

Next, Kergin shows uniqueness. To be sure, the claim is not that,
for a given g , there is a unique Pg e wn  satisfying the conditions

described in (ii), for that is not true. For example, the function
g:x I-> x(l)x(2) has all functions p:x i-- ax(2) with 0 4 a 4 1 as
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linear "interpolants" at the points (0,0) and (1,0) in that sense.

Rather, Kergin claims the uniqueness of such a linear map P and

proves it by showing that plane waves (with the univariate function

g a polynomial) have unique "interpolants". Given the many

conditions P has to satisfy, the uniqueness is not surprising. The

hard part is to show existence.

For this, Kergin introduces (in rather different notation) the

linear functionals

I f g k g(Xo+S YX + ... + SkVX ) dSk ds (4.1)
[x0,. -x] 0 0 1 1  kk k.. I

and sets

Q span { g -> fitJ] qk(D)g IJi k+l , k=O, .... n)
Here, tj := (tj)jej , with J c (0,...,n) as before. Then, by some

hard counting, Kergin shows that dim Q C dim wn . Add to this the fact

that

n = {0) (4.2)

and you can conclude that the LIP(w n,Q) is correct. Now take for P

the resulting projector. Then
fit]q k(D)(g - Pg) - 0

hence qk(D)(g - Pg) - 0 at some point in cony tj . The claim (4.2)

is established by an inductive argument: If p e vnA Qi I then, for all
n f Dap - 0 , therefore Dap - 0 , i.e., p 6-

etc.

Micchelli & Milman [1980] give a striking formulation of Kergin's

interpolation scheme which shows it to be a "lifting" of the Newton

form of the univariate interpolating polynomial. Micchelli came to this

by noticing that Kergin's linear functionals (4.1) are closely related

to the divided difference (as the notation used in (4.1) already

intimates) via the Hermite-Genocchi formula (see N8rlund (1923; p.16]):

kk
[ ,.,kg= I Dkg

[TO,.-T I ]

for any sufficiently smooth univariate g , a fact easily proved by

induction. This allows us to write the univariate polynomial interpol-

ant P T f in Newton form as

(P g)(x) _ Z0 (x_- 0 ) "'* (X-l) f Dkg "T 0 k-1 ITO .... ' k)

Also, recall that [ 3JP g = [ 3J g for all J c (0,...,n) . Now

consider the Micchelli-Milman definition
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n
Pf x I-- > kE [t 0 .l. t Dx_t 0 ... Dx -t k f

k=O O tkJ X k-I

for any f e X :_ C(n)(C T ) . The resulting map P is linear and cont-

inuous on X , hence can be understood by looking at its action on the

set R of plane waves. For f = goX e R , one computesD f m yMi gi()ll*) oDyf - E1~yi g(*.)A(i) = (x*y) g(l) o

therefore

andso Dx-t 0... Dx-tk-1
f  - X*(x-t 0) . *X-tk 1 1 gl(k)ox

n (k)and 500o-

Pf(x) 0 En*(x-t0) 0 . 1(xtkt) f g(k)
[x*t0,..-,X*t I]

The last integral equals [A*t0,...,A*t kg , by the Hermite-Genocchi

formula. Therefore, finally,

P(goa) = (p(l)ti)9)o1

This is the crucial observation. It shows that ran P C_ n and that,
for any f = goA e R , any polynomial qk homogeneous of degree k

and any J_ (0,...,n) with IJi = k+l ,

f~ )q (D)Pf f~ i q k(D)f
since, for such an f

qk(D)f - E A DD ) a(m)f A ag(k)OA

and lei k I al-k
a1nd (P(Xt i)g)(k)o0A [*tjlP(l ti)g - (lxtj lg

This establishes that (4.3) is a formula for Kergin's map. III
Micchelli [19801 offers additional detail, e.g., the error formula

one associates with the Newton form which leads to a constructive proof

of the Bramble-Hilbert lemma (see Bramble & H'1hert (13"1).

Kergin's scheme raises some questions. In .ontrast £.t its univar-
iate antecedent, it requires derivative information even when all the
interpolation points are distinct. This has been remedied recently in

Hakopian (198111 by the simple device of lowering the order of the
derivatives appearing in the definition of the linear functionals which

make up Kergin's interpolation conditions Q . One may also investigate
other variants of Kergin's scheme. In particular, Kergin's scheme makes
it very attractive to study the linear functionals (4.1), as a basis
for a suitable definition of the divided differences of a function of
several variables. This was, in fact, the consideration which led

Kergin to his scheme in the first place.
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The study of these linear functionals led C. A. Micchelli to the
recurrence relations for multivariate B-splines and so opened up that

fruitful area of research which is the topic of the remaining lectures.

S. Multivariate B-splines

Following the lead of Schoenberg [19653, the multivariate B-spline

M(.Ito,...,tn) was defined in de Boor [1976] by the rule
iVoln (P- ix ) a[to, ... ItnI

M(xlt 0 ,...,tn ) : n voln I[xt... t]

thus generalizing a particular characterization of the univariate

B-spline due to Curry & Schoenberg (19661. Here, to , ..., tn  are

points in Rn , (K] is the convex hull of the point set K , and P

is the canonical projector

p e > Rm : xl-> (x.
Further, vOlk(K) is the k-dimensional volume of the set K

Such a B-spline is a nonnegative piecewise polynomial function of
degree 4 k :- n - m , its support is [PtO,...IPtn] , and it is in

Cn-m -  as long as the knots Pt0 , ... , Ptn are in general position.

All this will be proved shortly.

In 1978, C. A. Micchelli [1980] proposed an equivalent but more
suitable and flexible definition of M(.ItOI...Itn) as the
distribution c,. C:(Do) given by the rule

M(-ItO ,....t) f -> ni f fop . (5.1)
(t0 ,.-.,t n]

This definition makes sense even if the ti's are not in general

position. M(.It 0 I...Itn) is a function (in L.(R m ) ) if and only if
VOlm(Pto,...,Ptn] * 0 and, in that case,

f M(.Itt,...t n)f - ni f fop (5.2)
(to....,It n

More than that, Micchelli [19801 proved recurrence relations for

these multivariate B-splines, of the following form.

Theorem 5.1. (i) If x = I aiPt i with ai - 0 , then

DxM(Olto,...Itn) n E aiM(to,...,ti ft i+ , . tn)

(ii) If x = I aiPt i with IQi = 1 , then
(n-m) M(xlt0,....,t n n E aiM(x t0  .... ti lti+1 . . n
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These recurrence relations were proved almost simultaneously by a

different approach by Dahmen [197911 and have since then been given

different proofs by Micchelli (19791, H8llig [19801, Hakopian [19801,

de Boor & H~llig [19811 and perhaps others. I'll now give a version of

this last proof, from de Boor & H8llig (19821, not only because,

naturally, I like it best, but because it covers a more general

situation than described so far.

To begin with, I have to clear up an inconsistency in the notation

I have employed. This inconsistency shows up in (5.2) where both

f and f
[t0 ,... Itn ]

occur and [to#...,tn ] is, off-hand, not meant as the convex hull of

the points to # ..., tn , but rather as an indication that the integral

is to be formed as described in (4.1). These two meanings only differ

by a scalar factor, though, viz. the factor nlvoln(t0,...,tn ] , hence

could be made to coincide if, in (4.1), we multiplied the right hand

side by nlvoln [tO,...tn] . I settle this inconsistency instead by

abandoning from now on the interpretation (4.1) and entirely rely on

the more naive interpretation off~to, ...,Atn)

as the integral over the convex hull of the points to , ..., tn
Consider now, more generally, a polyhedral convex set B in Rn

some linear map P into R and having B in its domain, and the
distribution MB on R1  defined by the rule

MB f B f op , (5.3)

i.e., as the P-shadow of B . The simplex spline M(.It 0 ,...,tn)

results when B - (to,..,tni/voln(t0 ,...,tn ] and P is the canonical

map Rn- Rm" , but it has already turned out to be fruitful to allow

more general sets B and, usually as a simplification, more general

linear maps P .

In any case, the recurrence relations can be proved in this
generality. The relevant observation is that the boundary of such a

convex polyhedral set consists again of convex polyhedral sets Bi , of

one dimension lower, hence Stokes' Theorem can be used to relate M

MB to Mi :- MB, . For this, we also need the corresponding outward
normal vi to B at Bi relative to the affine hull of B , and an

arbitrary point bi  in the affine hull of Bi . For simplicity, we

assume that B is a body, i.e., B has Rn  as its affine hull. With

these assumptions and notations, the following theorem holds.
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Theorem 5.2. (i) DpzM - - zi zavi Mi al. z e Rn

(ii) (n-m)M(Pz) - Ii (bi-z)*vi Mi(Pz) , all z e Rn

(iii) DM - (n-m)M - ti bi*v i Mi

The proof of (i) is immediate:

(D 2M)f - - 'B (Dpzf)OP . - fS Dz(fOP) . - fasZ'v fop

- i 'B ~V fop - - Zz'Vi Mif

This uses the fact that, by definition, the derivative DyM of the

distribution M is the distribution obtained by the rule

f -> M(-D yf) , and the standard interplay

Dy(fOP) - (Dpyf)OP

between differentiation and linear change of variables. This interplay

also proves that

(Df)(Px) - ) - (Dx(fOP))(x) - (D(foP))(x) (5.4)

with D the first order differential operator given by the rule

r
Df : Fi Difj -l

in case f has its domain in Rr , and with

(F f)(x) :- x(j)f(x) , all j

Thus (Df)(x) - (Dxf)(x) , and the adjoint of D is -S D F . This is

of use in proving (iii): We have

DjFj - 1 + FjDj
therefore

- (DM)f - fB( EDjF~f)OP - mMf + J3(Df)OP
Sand na

fB 1! 1 DiFi(foP) - nMf + fa D(foP)

Here, the last integral in the first line equals the last integral in

the second, by (5.4). Therefore,
n

(DM)f - (n-m)Mf - DiFi(foP)i i

This settles (iii) since
; .n n

z 'B DiFi(fOP) z i faBvli) Fi(foP) - aB.*v) fop- i-1 i-1 3v)

and, on the facet Bi , the function (.*v) is constant.

Finally, to prove (ii), conclude from (i) and (iii) that, for

any z with Pz - x
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0 - (D - Dz )K(x

- (n-m)M(x) - Z b 1 V1 M1Cx) + E z*V i M1 (x)

As an exercise, I specialize Theorem 5.2 to the situation of

Theorem 5.1. This means that B - [t0, ... tn) and that we may set B i

:- ((tj) \t i  , i-0,...,n . Then

M - VOlnB M('It 0 w...Itn) I

therefore

Mt = Voln-lB i M('to,..ti-i,ti+l,..-,tn)

Also,

(ti-bi)*vi vol Bi  -n vol B

showing that the coeffients which appear in (i)-(iii) are, for this

case, closely related to the barycentric or areal coordinates

associated with the simplex B . In any case, if z - Ejsjt. with

ZEa - 0 O then, since vi is perpendicular to the affine hull of

(tj) \t i , we have (tj-bi)*v1 - 0 for all j O i and so

z*v i  a Eja.(t -b)*V a (t-b )*V i #

therefore, from (i),

DpzM(.I(t)) - DpzM/vOl B - (-Xi z*vi Mi)/Vol B

- n Zi o i M1 /vol B i - n EiiM{-I(t \t i )

This proves (i) of Micchelli's Theorem 5.1, with x - Pz • For Theorem

5.1(11), we have, with x - Pz , z - Zisit. and E s - 1 , that

(bi-z)v i a (bi - sat.)*v i . E (bi-t.)*v' " ai (b-ti)*Vi O

therefore, from (ii),

(n-m)M(xI(t.)) - Xi(b -z)*v i Mi(x)/vol B

- Zi si (bi-ti)*vi Mi(x)/vol B - Zi *iM(xJ(t )\ti)

W. Dahmen has pointed out to me that, once one recognizes that the

recurrence relations in Theorem 5.1 can be written as in Theorem 5.2 in

terms of facet normals, then Theorem 5.2 can be derived from Theorem

5.1 using the fact that any convex polyhedral body can be triangulated,

i.e., is the essentially disjoint union of simplices, any two of which

are either disjoint or else have exactly a face in common.
The recurrence relation (iii) was first stated and proved (for

simplices) by Hakopian [1980], in his simple proof of Theorem 5.1.

Particularly useful choices for B other than the simplex include

cones and boxes. The choice of the cone
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(t + En. (t -t 0 , all i}

with vertex to and generating rays ti-to i-l,...,n leads to the

cone spline M = MB . This is the truncated power introduced and

heavily used in Dahmen [19791, in direct generalization of the
functions SR-> R : x -> (x - t)+ k- 1

familiar from univariate spline analysis. Of course, every such cone

spline can be obtained as a translate of the P-shadow of the standard

cone

R+n  {z e Rn : 0 4 z(i) , all i }

for an appropriate choice of the linear map P

Choice of the box or parallelepiped

(t- + n . 0 a (i 4 1 all i)

gives rise to the box spline introduced in de Boor & DeVore (19811 and

further studied in de Boor G H5llig [1982). Any such box spline is a

translate of the P-shadow of the standard box

(z e 10 : 0 ( z(i) 4 1 , all i)

for an appropriate choice of the linear map P

Repeated application of the recurrence relation (i) provides the

information that, for arbitrary vectors y1 , .... Yr

Dy.o.. DyrB span( MF : F is an (n-r)dim.face of B).

Thus all r-th order derivatives of MB are in L. provided PF is

m-dimensional for every (n-r)-dimensional face F of B . This allows

the following conclusions, asserted earlier for the simplex spline:

(iv) MB e L(d) C C(d -l) , with

d :a max ( r : dim PF = m , V (n-r)-dim.faces F of B)

and, for this d , Ma 0 C(d)
(v) If PB is m-dimensional, then MB is a pp function of degree

4 k :- n-m , with supp MB S PB . Indeed, any (n-k-l)-dimensional

face F of B is mapped by P into some hyperplane in SP , hence

all (k+l)st order derivatives of MB have their support entirely on

some hyperplanes. This implies that, on each connected component of the

complement of
{ PF : F is a face of B, dim PF < m }

MB agrees with some element of wk
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6. Approximation from the span of multivariate B-splines

A solitary B-spline is of little use in approximation. Thus we
consider now a whole collection a :- (B) of polyhedral convex bodies

in En , each giving rise to its P-shadow MB , and ask just how B
should be chosen so that we get a "useful" family (MB) . We use the

well known properties of Schoenberg's univariate B-spline (see, e.g.,

de Boor 11976)) as a guide.

A first useful property of univariate B-splines is that, properly
normalized, they form a partition of unity. This is not so hard to
achieve with multivariate B-splines. We take for P the canonical

map Rn - 1 and choose 3 as a partition of some slab I"xA in
R, for some A C. Rk  (with k :- n-m . as before). Then

Z KB(X) a Z VolkP-lxrB M VolkP-lxAUB - VolkA
3 B 3

i.e., we have a partition of the constant VolkA . Choosing A to have

VolkA - 1 or else dividing each MB by Volkh , gives the desired

partition of unity. We conclude at once that a continuous function f

can be approximated from

Sa  :o span (N3 )B63
to within

*(f,131),

with

13 t- sup3 e3 dian PS
The simple approximation

Z f(TB) N3
with TB e B , all B , is that accurate (exercise).

Can we do better in case f is smoother? From the univariate
theory, we would expect to get

dist(f,S3 ) _ 0 (lBlk+l) (6.1)
in case f e L.k+l . This we could conclude at once if we had available

a quasi-interpolant Q for SS , i.e., a bounded linear map Q into

53 which is local and reproduces wk • A typical specification of

"local" would be to require that gf c depend only on fIN(c) with

N(C) 3- U P Ps P3AC 0 0 ) .
Then, as in Lebesgue's inequality, we could conclude that

f - Qf - f-p - Q(f-p) , for all p e k k
therefore

I(f-0f)JCI 4 I(f-p)IcI + tQll(f-p)JN(C)l
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and so t
I (f - Of) Ice 4 (1 + 1Q1] distN(C (f,w ) .

This leads to (6.1).

A first requirement for such an argument is that Yk S3 . This
was established by Dahmen in [197912 by a clever argument for the case

that B is a triangulation of such a slab
S : - 1P x A ,

i.e., B consists of simplices. In effect, he deforms the slab

appropriately to S' so that the function

p : x k-> Volk P-x s'

is (locally) a polynomial of degree k , yet S' is still triangulated
by the simplices B' , with B' the simplex into whose vertices the

deformation sent the vertices of B . The deformation only takes place
in directions perpendicular to Ii . Therefore P carries the vertices

of B and the corresponding vertices of B' to the same points.

Consequently,

MB/volnB - MB,/volnB'

and so
p U EBeB (vol B'/vol B) MB

He is able to modulate the deformation sufficiently to obtain a basis

for W in this way.

This description neatly avoids discussion of some very nontrivial
details.

In [198012 , Dahmen uses A _[ 0,11k . There, he uses his result
to support the claim that (6.1) holds (called Theorem 3.1 there), even
without benefit of a quasi-interpolant, but I cannot follow the
argument (even though it is a generalization of a univariate argument I
once made up). I must therefore go the way of quasi-interpolants. Here
I come across a difficulty first observed by Dahmen [198012 ; With the

kchoice A = (0,11 , the B-splines (MB) are linearly dependent.
Dahmen overcomes this difficulty through an averaging process which
provides a quasi-interpolant bounded in terms of a local mesh ratio.

There is another, practical difficulty, though, with this setup.
:1a The B-splines MB , their support, their sets of discontinuities, all

depend on the triangulation B of the slab S . In practice, one would
like to start with some triangulation T of IP and then construct

B-splines in Tr (rI
1kT k,T ,C

the space of all pp functions of degree 4 k and smoothness r
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associated with that triangulation. Further, one would like to find

enough B-splines to staff a basis for r,T just as one is able to do

for m - I (which acounts for the "B" in their name).

This, as it turns out, is too much to ask for, for various

reasons. At present, the nature of the spaces vr is not at all

understood, except when r < I . We don't even know exactly when we are

entitled to a local basis for that space. We must therefore be

satisfied merely to construct MB e wT . But even that is not

possible in general, since the sets of discontinuities of MB are

associated with the projections of faces of B , hence not arbitrarily
choosable. In particular, even if B is a simplex, the connected

components of the complement of the discontinuity set need not be

simplices.

One can hope, though, to obtain, for a given triangulation T , a
linearly independent collection (MB) of B-splines of prescribed

smoothness, whose subdivision is a refinement of T and whose span

so contains wk  It is not difficult to do this for the univariate

B-splines. Take for A the standard simplex [eO,...,ek ]  in Rk

(with e0 := 0 , ej := (61j) for j > 0 ) and triangulate RxA by the

simplices

Ti : [tixefil ...' ti+kxe[i+k]I , all i

with (ti) the given knot sequence in R and [j] the remainder on
division of j by k+l . It is worthwhile to visualize this
construction for k - 1 and 2 . The construction uses the total
ordering of R in an essential way, hence it is not easily generalized
to the general case. Nevertheless, a construction of the desired type
was found by Dahmen & Micchelli [19821 and independently by H8llig

(19821. The underlying idea is to get a B-spline basis (MB) for
Vk,T and then to "pull apart their knots". Explicitly, with

A - teo,... ,ek]
the standard simplex in Rk and

T :- (vo,...,vm]
any particular simplex in the triangulation T , the simploid

~ 1 xA

is triangulated using the combinatorial product T*6 . I find it helpful

to visualize this construction in the following way:

In the cartesian product (vi)x(ej) , there are -m •

nondecreasing *paths" with endpoints (T0 ,e0  and (Tmek) • A typical
apatho is shown in the following figure.
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kI

0 1 m

Associate with each such "path" the simplex a in TxA spanned by the

points on that upath". It is a nice and worthwhile exercise to show

that the resulting collection
Et - (a)

of simplices forms a triangulation for TxA More than that, if we

carry out this construction for each e T, making certain only that

the ordering of the vertices of each i used is consistent, i.e.,

comes from a total ordering of all the vertices appearing in T , then

we obtain a triangulation

E :- T6A

for 10xA . This is straightforward except, perhaps, for the assertion

that

a rl - [V V o ,]  , all a, 0' e E

with V5  the set of vertices of the simplex o

Now consider (m,),,, . For each a C E , M has support in T

and PVO - Vr ,hence M has T as its support and agrees with some

polynomial there. For a given v e T , there are exactly (m5k) such' "m

Ma , i.e., exactly enough to staff a basis for wkIT * Since, by

Dahmen's result, vk G S1 , it follows that these M. form a basis for

* We conclude that (MO)5OE is a basis for Vk,T .
It's time to pull apart the knots. For this, denote by

V(Z) - V(T) x (eO,...,ek)

the vertices of the triangulation I - TOA . Let

F : V(E) -> Rn: (v,ei) -> (Fv,ei)

The only requirement H8llig [19821 makes on F (or ) is that it be
locally finite, i.e., Iran F n C1 < - for all bounded sets C .
Dahmen & Micchelli (19821 require that sign det a - sign det Fa
all aE E Here,

det o

is the signed volume of the simplex a . Its signature depends, of

course, on the ordering of its vertices and the ordering is meant to be

the ordering in V(E)
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With this, I am ready to state the basic result of this

construction due to Dahmen & Micchelli and to H11ig.

Theorem 6.1. For all y e Ji ,

(1 + x'y)k = Z C (y) NF (x)

for all x at which all the simplex splines occuring on the right are

continuous, with

CO(y) :- ki sign(det a) det Gy P

and

G yIxRk -> Rn: (x,u) -- > (x, (l+x*y)u)

In effect, Gy carries out Dahmen's appropriate deformation of

the slab MmxA mentioned earlier.

Since y is arbitrary, we conclude that

Vk S SFZ
The quasi-interpolant is now immediate, in case F is not too

violent. Specifically, assume that, for each T 6 T , there is some

ball bT which is contained in the support of every MF with

a 6 Z and is outside the support of every other N PC . This implies

that

SF£ a span (Mpa)sez on b.

and, as there are just enough simplex splines KF to staff a basis

for 'k I this implies that

HMa lbT a Ik lbT for every a 4 ZT

This allows the construction of linear functionals X as

normpreserving extensions, to L (br) say, of the coordinate

functionals U on k which carry the polynomial N Falb to 68, ,

all a, a, e z . Since

supp %a C b T , all aeE eZ,

this shows that (Is) is dual to (M Fa) , i.e.,

Sa AaMpal a C . all o e .

The resulting quasi-interpolant

SI f -> Z A f MNa
is therefore even a linear projector onto SFE ' i.e., it reproduces

all of S F and not just wk * The only concern is its size. 1Q1 can

be bounded in terms of the relative size of b. in T * In particular,
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all is well in case the vertex perturbation map F is not too violent.

Theorem 6.1 provides a generalization of Marsden's identity. It is

fair to say that it is based on a two-dimensional version of Marsden's

identity first proved by Goodman & Lee [1981]. These authors provide,

in particular, the more explicit formula
n

CO(y) - ki (1 + zj*y)
j-3

with the z) determined as follows: The vertices vj of Fo are of

the form

Pv x ei

and, for each i a 0,...,k - n-2 , there is at least one j so that

vi = (Pvj,ei) . This leaves exactly two possibilities:

(i) for some i , there are three vertices of the form (Pvj,ei)

Then we will call them v0 , vI, v2

(ii) for two values of i , there are two vertices of the form

(Pvj,ei). Then we will call one pair v0, v, and the other v2, v3

With this, we takefPVj .> 3

z : Pv3  ,if (i)

aff(Pv0,Pv1] (raff[Pv2,Pv3] , if (ii)

Hbllig [19821 gives a simple example to show that such a nice

formula with linearly factored coefficients is, in general, not to be

expected for m > 2 . Still, for the practically important case

m - 2 , these simple formulae lead Goodman & Lee to the intriguing

generalization

V : f -> E f(t0 ) MFo

of Schoenberg's variation diminishing spline operator. This operator

V is obviously positive regardless of the choice of the to . Goodman

& Lee choose

to -= (z3 + ... + Zn)/(n-2 )

since, in light of Theorem 6.1, this implies that V reproduces I.

They are able to prove that, for any continuous f , Vf converges to

f in the uniform norm as IFEI -> 0 , provided only that all the

zj's for a lie in PFa , an issue only for z3 and only in case

(ii).

There is an analogous quasi-interpolant construction for the span

of certain translates of a box spline in de Boor & H81lig [19821. The
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arguments have a different flavor, though, since the resulting pp

functions have regular meshes, hence are amenable to "cardinal spline"

techniques familiar from Schoenberg [1973].

7. Epilogue

In these lectures, I have touched on only very few questions of

current interest in multivariate approximation theory. Even if I

restrict attention to splines and pp functions, there are several areas

of current research which I had intended to discuss when I first

prepared for these lectures but which, in the end, I did not manage to

fit into the allotted time.

The nature of the space
= k,T

of smooth pp functions on a given partition T of some a C Rm is not

at all understood. Questions of interest concern the existence of a

locally supported basis for S , the dimension of S , the dimension of

the subspace consisting of those f e S which vanish (r+l)-fold at the

boundary of 0 , the degree of approximation achievable from S . There

is the conjecture that sufficiently smooth functions can be

approximated to within O(tT~s ) if and only if S contains a local

partition of every p e vs_1 , but attempts to prove this by

construction of a quasi-interpolant have required, in addition, some

kind of stability of the partitions. Work concerning dim S has been

done only for m - 2 and initially only for r = 1 , the first

nontrivial case. See Strang [1974], Morgan & Scott (19751, and the

survey of Schumaker [1979]. Most recently, Chui & Wang (198111-3 have

given precise results for certain T and arbitrary r . The existence

of a local partition of unity in S is taken up in de Boor & DeVore

(19811 for certain regular T in order to understand better the degree

of approximation from S . These questions are further pursued in de

Boor & H8llig [19821. In both papers, the relationship between S and

B-splines in S is explored, but even in the context of a simple and

regular T (e.g., a rectangular grid with all north-east diagonals

drawn in), this relationship is not yet fully understood.

The adaptive choice of the partition T is the topic of de Boor &

Rice [19791. Dahmen [19821 describes one way to use simplex splines

adaptively. The degree of approximation achievable from S by proper

-36-



choice of T is the topic of Dahmen, DeVore & Scherer [1980].
r R2aeth

Practial aspects of approximation from S = kT on R are the

topic of the two survey papers Barnhill [1977] and Schumaker [1976]. An

interesting comparison of methods is given in Franke [1982]. And then

there is the vast literature on the constructive aspects of the Finite

Element Method! Some references of particular interest to Approximation

Theory are : Ciarlet & Raviart [197211,2, Courant [1943], Fix & Strang

[1969], Guglielmo [1969] , Strang & Fix (1973], but this is clearly

just a taste.

The variational approach to splines is, of course, not restricted

to the univariate situation. Already Golomb & Weinberger (1959]

consider particular bivariate examples as illustrations of the general

theory. This theory has the following setting. A collection A of

continuous linear functionals on some linear space X is given. Since

the problem will only involve
AI  :- ix e X : Xx - 0 for all A 6 A}

we might as well assume that A is a closed subspace of X*. Further,
a bounded linear map T from X to some normed linear space Y is
given. The problem is to determine, for given x 6 X , if possible, an

element x* at which the map

x + A ->R+ y --> ITyI

takes on its minimum. Such a minimizer x* is called a (T,A)-spline

interpolant to x . The word "interpolant" is appropriate since x*

agrees with x on A . Golomb & Weinberger (1959] deal with the
special case: X = Y is a Hilbert space and T = 1 . In this setting,

the map x 1-.> x* is just the orthogonal projector onto A considered
as a subspace of X . This schizophrenic nature of the interpolation

conditions A , linear functionals on the one hand and elements of X

on the other, is at the heart of the practical application of this

theory. In standard Hilbert spaces of smooth functions on some domain

9 , the linear functional (t] of evaluation at some point t turns
into the section G(t,.) of the appropriate Green's function. In
particular, when X = L2 (k)[a,b] , then [t] is represented by a pp

function of degree 2k-i and in C(2k2) with just one breakpoint,
at t.

I was held back from exploring multivariate splines obtained in
this way by the realization that this would require me to obtain and

work with the Green's function relevant to X . This would usually not

be polynomial nor locally simple, and would depend essentially on the
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domain 0 . Duchon [1976], [1977] dealt with such objections by the

very effective device of choosing all of Rm  for 2 . The resulting

thin plate splines have already found practical use. Their theory is
described invitingly in Meinguet (1979).
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